Abstract

Lanthanide (Ln3+) based ferroelectric phosphors, with an integration of PL emission and ferroelectric effect, are unveiling an exciting realm of possibilities for multifunctional ferroelectric-optic materials. However, how the ferroelectric host enables the tuning on the PL emissions through modulating the local structure (e.g., lattice site, symmetry, strains etc.) of the Ln3+ activator is not established yet. In this work, a luminescent-ferroelectric material, i.e. Dy3+ doped BaTiO3 ceramic (Ba1–xDyxTiO3 (x = 0–0.07), abbr: BTO:Dy3+), was explored to address the aforementioned issues. The BTO:Dy3+ ceramics were synthesized by a solid-state reaction method. The crystal structure, photoluminescence (PL) and electric properties (dielectric constant, ferroelectric hysteresis and piezoelectric hysteresis loop) were systematically investigated. The BTO:Dy3+ ceramics show two predominant emission peaks, corresponding to the blue magnetic dipole transition (477 nm, 4F7/2 → 6H15/2) and yellow electric dipole transition (573 nm, 4F7/2 → 6H13/2), the intensity ration of which can be modulated by the ferroelectric polarization that causes the slight lattice deformation. Such a polarization-emission modulation combining with the Dy3+ doping could accelerate the color change, from yellow to blue, which is characterized to detect the phase transition, with a method and mechanism were proposed, that is, the phase change is reflected by the PL characteristic peak intensity ratio. Therefore, the current results offer a convenient photoluminescence method for detecting the ferroelectric phase transition and a feasible approach to study the interaction between the photoluminescence and polarization in ferroelectric materials, for providing new insights for the development of multifunctional materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call