Abstract

This paper presents the effect of material-temperature dependent on the vibrational characteristics of a functionally graded (FG) thick beam by using finite element method. The beam is modeled by higher order shear deformation theory (HOBT), which is accommodated for a thick beam. The material properties are proposed to be temperature-dependent and vary continuously through the thickness direction according to a power-law distribution. The equation of motion is derived by using Lagrange’s equations. The finite element method is exploited to discretize the model and obtain a numerical solution of the equation of motion. The model is verified and compared with previously published works. The effects of material distributions and slenderness ratios on the fundamental frequencies and mode shapes are presented. Also, the effects of material-temperature dependency on the fundamental frequencies are figure out. Results show that the former mentioned effects play a very important role on the dynamic behavior of thick FG beams.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.