Abstract

In this study, temperature controlled soil-water retention tests and unsaturated hydraulic conductivity tests for densely compacted Gaomiaozi bentonite — GMZ01 (dry density of 1.70Mg/m3) were performed under confined conditions. Relevant soil–water retention curves (SWRCs) and unsaturated hydraulic conductivities of GMZ01 at temperatures of 40°C and 60°C were obtained. Based on these results as well as the previously obtained results at 20°C, the influence of temperature on water-retention properties and unsaturated hydraulic conductivity of the densely compacted Gaomiaozi bentonite were investigated. It was observed that: (i) water retention capacity decreases as temperature increases, and the influence of temperature depends on suction; (ii) for all the temperatures tested, the unsaturated hydraulic conductivity decreases slightly in the initial stage of hydration; the value of the hydraulic conductivity becomes constant as hydration progresses and finally, the permeability increases rapidly with suction decreases as saturation is approached; (iii) under confined conditions, the hydraulic conductivity increases as temperature increases, at a decreasing rate with temperature rise. It was also observed that the influence of temperature on the hydraulic conductivity is quite suction-dependent. At high suctions (s>60MPa), the temperature effect is mainly due to its influence on water viscosity; by contrast, in the range of low suctions (s<60MPa), the temperature effect is related to both the water viscosity and the macro-pores closing phenomenon that is supposed to be temperature dependent.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.