Abstract

Recently, the authors proposed a kinetic model for the nucleation mechanism of protein folding where a protein was treated as a heteropolymer with all the bonds and bond angles equal and constant. As a crucial idea of the model, an overall potential around a cluster of native residues in which a protein residue performs a chaotic motion is considered to be a combination of three potentials: effective pairwise, average dihedral, and confining. The overall potential as a function of the distance from the cluster center has a double well shape which allows one to determine the rates with which the cluster emits and absorbs residues by using a first passage time analysis. One can then develop a kinetic theory for the nucleation mechanism of protein folding and evaluate the protein folding time. In the present paper we evaluate the optimal temperature at which the protein folding time is the shortest. A method is also proposed to determine the temperature dependence of the folding time without carrying out the time consuming calculations for a series of temperatures. Using Taylor series expansions in the formalism of the first passage time analysis, one can calculate the temperature dependence of the cluster emission and absorption rates in the vicinity of some temperature T(0) if they are known at T(0). Thus one can evaluate the protein folding time t(f) at any other temperature T in the vicinity of T(0) at which the folding time t(f) is known. We also present a model for the thermal denaturation of a protein occurring via the decay of the native structure of the protein. Due to a sufficiently large temperature increase or decrease, the rate with which a cluster of native residues within a protein emits residues becomes larger than the absorption rate in the whole range of cluster sizes up to the size of the whole protein. This leads to the unfolding of the protein in a barrierless way, i.e., as spinodal decomposition. Knowing the cluster emission and absorption rates as functions of temperature and cluster size, one can find the threshold temperatures of cold and hot barrierless denaturation as well as the corresponding unfolding times. Both proposed methods are illustrated by numerical calculations for two model proteins, one consisting of 124 amino acids, the other consisting of 2500 residues. The first one roughly mimicks a bovine pancreatic ribonuclease while the second one is a representative of the largest proteins which are extremely difficult to study by straightforward Monte Carlo or molecular dynamics simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.