Abstract

An experimental study is carried out to assess the effect of temperature on the conversion efficiency of ultrahigh-frequency energy harvesters based on diode-capacitor Dickson charge pumps, frequently used in self-energizing circuits, such as in radio frequency identification tags or in wireless sensor nodes. Using off-the-shelf Schottky diodes often adopted for this application, it is shown that the harvester conversion efficiency at 868 MHz is temperature dependent due to the changing rectification ratio, namely the ratio between the forward and the reverse current flowing through the low barrier height Schottky diodes, which both show a positive derivative with T. The experimental study, supported by SPICE simulations, has shown that a temperature variation might be particularly harmful at the lowest incident power regimes, when even a minimal drop in the conversion efficiency might determine the out-of-servicing of a wirelessly energized circuit.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.