Abstract
The present work studies the temperature effects on the formation of a uniform liquid hydrogen layer inside a spherical glass shell (SGS). The profile of the liquid layer is first investigated for an isothermal case. An equation suitable for describing the profile is derived by including the London-van der Waals attractive forces between the liquid and substrate molecules. Two theoretical models are then established to explain the changes in the liquid layer profile under the influence of a vertically applied temperature gradient. The characteristics of the fluid flows are obtained by solving the fluid equations under the low-Reynolds-number approximations. The effect of the component separation both in the liquid layer and the vapor region, which is induced by the temperature gradient, is studied when the enclosure inside the SGS is a mixture of hydrogen isotopes. A uniform layer can also be formed for the mixture liquid except that the required temperature gradient is now positive in direction, unlike the case of the single-component liquid. The heating effect due to the radioactive decay of tritium is also evaluated. An experimental apparatus capable of generating a desired temperature gradient across the SGS at liquid hydrogen temperatures is described. The profiles of the liquid layer are observed for different temperature gradients and the results are in qualitative agreement with the theoretical predictions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.