Abstract

Condensed smoke or liquid smoke (LS) and lauric arginate (LAE) are antimicrobials used in food preservation. They have demonstrated abilities to reduce or inhibit pathogenic and spoilage organisms. Few studies, however, have reported on the effectiveness of LS or LAE over the range of temperatures typically encountered in food marketing channels. Therefore, the effects of temperature on the antimicrobial properties of two commercial LS fractions, an LS derived from pecan shells, and LAE against two common foodborne pathogens, Listeria and Salmonella, were investigated. The MICs of the three LS samples and LAE were measured at 4, 10, and 37°C for Listeria monocytogenes strains 2045 (Scott A, serotype 4b) and 10403S (serotype 1/2a) and two strains of Listeria innocua, a well-established surrogate, and at 10, 25, and 37°C for Salmonella enterica serovar Typhimurium and Salmonella enterica serovar Heidelberg. The MICs for LS against Listeria ranged from 3 to 48% (vol/vol), with higher MICs seen with lower temperatures. The MICs for LS on Salmonella ranged from 3 to 24%. Values for LAE ranged between 0.004 and 0.07% for both pathogens, and like LS, higher MICs were always associated with lower incubation temperatures. Understanding how storage temperature affects the efficacy of antimicrobials is an important factor that can contribute to lowering the hurdles of use levels and costs of antimicrobials and ultimately improve food safety for the consumer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.