Abstract

Temperature fluctuations can affect neurological processes at a variety of levels, with the overall output that higher temperatures in general increase neuronal activity. While variations in firing rates can happen with the neuronal system maintaining its homeostatic firing pattern of tonic firing, or bursting, changes in firing rates can also be associated with transitions between the two patterns of firing. Our computer simulations suggest a possible mechanism directly related to the shortening of the duration of the action potential for higher firing rates with temperature increase. Increased temperatures also shorten the period doubling cascade and chaos transition between tonic and burting regimes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call