Abstract

The observed angular dependence of the electron paramagnetic resonance linewidth in the ab and ac planes of CuCa(AC)2, 6H2O in the temperature interval 77K–12K was explained by considering dipolar interactions along with hyperfine and isotropic exchange interactions in these two planes. It was found that this so called linear-chain copper compound can be better described by a three dimensional paramagnet. The exchange interaction is very nearly isotropic with values Jab = 0.0098 cm−1 and Jc = 0.0103 cm−1. The values of the A⊥ derived from the linewidth fit in the ab plane are 14G at 77K and 60.5G at 1.2K. Due to insufficiency of data in the ac plane, the fit was done with the measured value of A∥. Although the exchange interaction has been found to be temperature independent the hyperfine interaction increases very much at low temperatures. The high temperature (300–460K) EPR spectra are quite different from the low temperature spectra. High temperature differential thermal analyses and thermogravimetric analyses have been carried out and corroborated with the EPR findings.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.