Abstract

A theoretical study of a quenched−annealed system where both components were modeled as charge symmetric +1:−1 primitive model electrolytes is presented. The adsorbed model electrolyte, mimicking lithium chloride solution, was assumed to be in thermodynamic equilibrium with an external reservoir of the same electrolyte. This partly quenched system was studied by applying the replica Ornstein−Zernike (ROZ) integral equation in the hypernetted chain (HNC) approximation and the grand canonical Monte Carlo technique. The effects of the concentration of matrix ions, pre-quenching conditions, and the electrolyte and solvent conditions on the adsorption of electrolyte were examined. The results indicate that the mean activity coefficient of the adsorbed electrolyte may differ substantially from the value of the corresponding quantity in the equilibrium bulk solution. The concentration of the annealed electrolyte in the matrix can be higher (sorption) or lower (rejection) than the corresponding equilibrium bulk c...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call