Abstract

We adopt the cluster size distribution model to investigate the effect of temperature on homogeneous nucleation and crystal growth for isothermal polymer crystallization. The model includes the temperature effects of interfacial energy, nucleation rate, growth and dissociation rate coefficients, and equilibrium solubility. The time dependencies of polymer concentration, number and size of crystals, and crystallinity (in Avrami plots) are presented for different temperatures. The denucleation (Ostwald ripening effect) is also investigated by comparing moment and numerical solutions of the population balance equations. Agreement between the model results and temperature-sensitive experimental measurements for different polymer systems required strong temperature dependence for the crystal-melt interfacial energy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.