Abstract

A systematic procedure is proposed to study the effect to temperature change to distribution feeder load profiles and losses by using the typical load patterns of customer classes. The database of an automated mapping/facility management (AM/FM) system is used to retrieve the component attributes and the topology process is executed to determine the electrical network configuration and the customers served by each distribution transformer. By using the monthly energy consumption of customers in customer information system (CIS) and the typical daily load patterns of customer classes, the hourly loading profiles of distribution transformers and service zones can be derived to solve the loadings of each primary feeder and lateral. The sensitivity analysis of load demand with respect to the temperature change for each customer class is performed by statistic regression according to the actual customer power consumption and temperature data. The load contribution by each customer class is updated by the corresponding temperature sensitivity and integrated together to form the new load profile of a service district with temperature change. To investigate the temperature effect to the distribution feeder, two of the Taipower distribution feeders are selected for computer simulation. The power demand at each load bus of the distribution feeder is calculated by applying the temperature sensitivity and the three- phase load flow analysis is then executed to find the new feeder loading and power loss with the temperature change.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.