Abstract

In this paper, the mathematical simulation is used to study the effect from the size of incoherent nanoparticles on thermal strength of heterophase aluminum alloy in materials with the equal volume fraction of the strengthening phase. It is shown that during the deformation process, prismatic dislocation loops and dislocation dipoles contribute to the dislocation density. It is found that the behavior of the flow stress curves of materials with the equal volume fraction of strengthening particles depends on a combination of scale parameters of the strengthening phase at various deformation temperatures. The areas of strong and weak temperature dependence of the flow stress are identified.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call