Abstract

In this study, we observed the evolution of the spectral emission intensity of a glass sample with the increase of sample temperature, laser energy, and delay time in femtosecond laser-induced breakdown spectroscopy (fs-LIBS). In the experiment, the sample was uniformly heated from 22 °C to 200 °C, the laser energy was changed from 0.3 mJ to 1.8 mJ, and the delay time was adjusted from 0.6 μs to 3.0 μs. The results indicated that increasing the sample temperature could enhance the emission intensity and reduce the limits of detection, which is attributed to the increase in the ablated mass and the plasma temperature. And the spectral intensity increases with the increase of the laser energy and the delay time, however, the spectral line intensity no longer increases when the laser pulse energy and delay time reach a certain value. This study will lead to a further improvement in the applications of fs-LIBS.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.