Abstract
The formation of glycine amino acid on ice grains in space raises fundamental questions about glycine chemistry in interstellar media. In this work, we studied glycine conformational space and the related tautomerization mechanisms in water media by means of QM/MM molecular dynamics simulations of four glycine conformational isomers (cc, ct, tc, and tt). Interstellar low density amorphous (LDA) ice and T = 20 K were considered as representative for a cold interstellar ice environment, while temperatures of 250 and 450 K were included to model rapid local heating in the ice. In addition to the LDA environment, water clusters with 4, 17, and 27 H2O molecules were subjected to QM/MM dynamics simulations that allowed glycine tautomerization behaviour to be evaluated in water surface-like environments. The tautomerization processes were found to be strongly dependent on the number of water molecules and specific isomer structure. All the glycine isomers mostly preserve their canonical "neutral" conformations under interstellar conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.