Abstract

We demonstrate two different classes of disorder–order phase transitions in two-dimensional layered nanomaterial MoO3 intercalated with ∼9–15 atomic percent zero-valent copper using conventional in situ electron diffraction and dynamic transmission electron microscopy. Heating to ∼325 °C on a time scale of minutes produces a superlattice consistent with the formation of a charge density wave stabilized by nanometer-scale ordering of the copper intercalant. Unlike conventional purely electronic charge-density-wave states which form, reform, and disappear on picosecond scales as the temperature is changed, once it forms the observed structure in Cu–MoO3 is stable indefinitely over a very large temperature range (30 °C to the decomposition temperature of 450 °C). Nanosecond-scale heating to ∼380–400 °C produced a completely different structure, replacing the disordered as-fabricated Cu–MoO3 with a much more crystallographically ordered metastable state that, according to a precession electron diffraction reconstruction, resembles the original MoO3 lattice apart from an asymmetric distortion that appears to expand parts of the van der Waals gaps to accommodate the copper intercalant. Control experiments in Cu-free material exhibited neither transformation, thus it appears the copper is a necessary part of the phase dynamics. This work shows how the combination of high-density metal atom intercalation and heat treatment over a wide range of time scales can produce nanomaterials of high crystalline quality in unique structural states that cannot be accessed through other methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.