Abstract

This paper describes the development of a computer model used to analyze the heat flow during pulsed Nd:YAG laser spot welding of dissimilar metals; stainless steel AISI 302 to low carbon steel AISI 1008. The model is built using ANSYS FLUENT 6.3 software where almost all the environments simulated to be similar to the experimental environments. A simulation analysis was implemented, based on conduction heat transfer, out of the key hole where no melting occurs. The effect of laser power and pulse duration was studied. Four peak powers 5, 5.5, 6.5 and 7 kW were varied during pulsed laser spot welding (keeping the energy constant), also the effect of four pulse durations 5, 6, 6.5 and 7 ms (with constant peak power), on the transient temperature distribution and weld pool dimensions was predicted ,using the present simulation. It was found that the present simulation model can give an indication for choosing the suitable laser parameters (i.e. pulse duration, peak power) during pulsed laser spot welding of dissimilar metals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call