Abstract

We investigated temperature distribution in SFCLs based on Au/YBa 2Cu 3O 7 (YBCO). SFCLs were fabricated by patterning Au/YBCO thin films grown on sapphire substrates into meander lines by photolithography. A gold film grown on the back side of the substrate was patterned into a meander line, and used as a thermometer. The front meander line was subjected to simulated AC fault currents, and the back line to DC current. Resistance of the front and back meander lines were measured and analyzed. The SFCLs were immersed in liquid nitrogen during the experiment for effective cooling. The temperature at the back side was close to that at the front side, and was closer at lower temperatures. This was observed at all stripes. The oscillatory component of the resistance of the back meander line is smaller than, and out-of-phase with that of the front meander line, which was more pronounced at higher temperatures. These results were analyzed quantitatively with the concept of heat transfer within the SFCL and to surroundings. Solutions for a heat equation explained the temperature distribution in SFCLs quantitatively: data coincided well with the solutions. In addition, quench development near the quench start point could be understood better than before, using the results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call