Abstract

The physiological processes taking place in human body are disturbed by the abnormal changes in climate. The changes in environmental temperature are not effective only to compete with thermal stability of the system but also in the development of thermal injuries at the skin surfaces. Therefore, it is of great importance to estimate the temperature distribution and thermal damage in human peripherals at extreme temperatures. In this paper, the epidermis, dermis and subcutaneous tissue were modeled as uniform elements with distinct thermal properties. The bioheat equation with appropriate boundary conditions has been used to estimate the temperature profiles at the nodal points of the skin and subcutaneous tissue with variable ambient heat and metabolic activities. The model has been solved by variational finite element method and the results of the changes in temperature distribution of the body and the damage to the exposed living tissues has been interpreted graphically in relation with various atmospheric temperatures and rate of metabolic heat generation. By involving the metabolic heat generation term in bioheat equation and using the finite element approach the results obtained in this paper are more reasonable and appropriate than the results developed by Moritz and Henriques, Diller and Hayes, and Jiang et al.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.