Abstract

Solar power plants have been deployed in the last 20years, so the interest in evaluating their performance is growing more and more. In these facilities, thermal energy storage is used to increase dispatchability of power. The two-tank molten salts storage system with “solar salt” (60wt.% NaNO3 and 40wt.% KNO3) is the one commercially used today. To be able to achieve a deep understanding of the two-tank solar storage systems with molten salts, in 2008 a pilot plant was built at the University of Lleida (Spain) and the experimental evaluation of the temperature distribution inside the tanks and their heat losses are presented in this paper. Therefore, this pilot plant is equipped with several temperature sensors inside the tank as well as in the different layers of external insulation. As expected, temperature is lower at the external part of the tank (near the cover, at the bottom and near the walls) and no stratification is seen. It is found that the influencing parameters in the temperature distribution of the salts inside the tank are: insulation, and the existence of different electrical resistances and the orientation and surroundings of the tank. Heat losses were measured and compared both with a simulated 1-D steady state model and previous literature. Measured heat losses were from 61W/m2 through the bottom to 80W/m2 through the walls (with 73W/m2 through the cover).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.