Abstract

Poly(dA).poly(dT) and DNA duplex with four or more adenine bases in a row exhibits a broad, solid-state structural premelting transition at about 35 degrees C. The low-temperature structure is correlated with the phenomena of "bent DNA." We have conducted temperature-dependent ultraviolet resonance Raman measurements of the structural transition using poly(dA).poly(dT) at physiological salt conditions, and are able to identify, between the high and low temperature limits, changes in the vibrational frequencies associated with the C4 carbonyl stretching mode in the thymine ring and the N6 scissors mode of the amine in the adenine ring of poly(dA).poly(dT). This work supports the model that the oligo-dA tracts' solid-state structural premelting transition is due to a set of cross-stand bifurcated hydrogen bonds between consecutive dA. dT pairs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.