Abstract

III–V semiconductors are extensively used in infrared sensor applications due to their superior structural and optical properties. Due to the extremes in the manufacturing and operating temperatures of the sensors, the knowledge of temperature-dependent elastic constants of these materials is of great importance. However, reliable measurements across a large range of temperatures prove difficult due to limitations of experimental setups. Density functional theory calculations present an affordable alternative. In this work, temperature-dependent elastic properties of InSb and GaSb are investigated using density functional theory within the quasiharmonic approximation. Calculated properties relevant for operation in a wide temperature range are presented including second order elastic constants, Young’s modulus (E), shear modulus (μ), Poisson’s ratio ν and the coefficient of thermal expansion (α). Our results are compared to available experimental values and good agreement is observed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.