Abstract
Lithium-ion batteries (LIBs) have been widely used as grid-level energy storage systems to power electric vehicles, hybrid electric vehicles, and portable electronic devices. However, it is a big challenge to develop high-capacity electrode materials with large energy storage and ultrafast charging capability simultaneously due to the sluggish charge carrier transport in bulk materials and fragments of active materials. To address this issue, composite electrodes of SnO2 nanodots and Sn nanoclusters embedded in hollow porous carbon nanofibers (denoted as SnO2@HPCNFs and Sn@HPCNFs) were respectively constructed programmatically for customized LIBs. Highly interconnected carbon nanofiber networks served as fast electron transport pathways. Additionally, the hierarchical hollow and porous structure facilitated rapid Li-ion diffusion and alleviated the volume expansion of Sn and SnO2. SnO2@HPCNFs delivered a remarkably high capacity of 899.3 mA h g−1 at 0.1 A g−1 due to enhanced Li adsorption and high ionic diffusivity. Meanwhile, Sn@HPCNFs displayed fast charging capability and superior high rate performance of 238.8 mA h g−1 at 5 A g−1 (∼10 C) due to the synergetic effect of enhanced Li-ion storage in the bulk pores of Sn and improved electronic conductivity. The investigation of the electrochemical behaviors of SnO2 and Sn by tailoring the carbonization temperature provides new insight into constructing high-capacity anode materials for high-performance energy storage devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Science China Materials
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.