Abstract

We report on the noise figure, associated gain, and the current gain cutoff frequency for comparable 0.25-/spl mu/m gate GaAs MESFETs and GaAs pseudomorphic HEMTs (p-HEMTs) as a function of cryogenic temperature. Contrary to previously published results which suggest that p-HEMTs should have a higher electron velocity and a lower noise figure than MESFETs due to the effects of the two-dimension electron gas (2-DEG), we have experimentally verified that this is not the case. We show clear evidence that the transport properties of the 2-DEG in p-HEMTs do not make a significant contribution to the speed enhancement and noise reduction during high-frequency operation of these devices. It is the fundamental InGaAs material properties, specifically the /spl Gamma/-L valley separation in the conduction band and associated effective mass of the electron in either GaAs or InGaAs channel, which limits the high-field electron velocity and thus the speed and noise performance of the devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.