Abstract

This paper reports a distributed temperature and strain sensor based on pulse pre-pump Brillouin optical time domain analysis. An uncoated, telecom-grade fused silica single-mode fiber as a distributed sensor was calibrated for its sensitivity coefficients under various strains and temperatures up to 800 °C. The Brillouin frequency of fiber samples changed nonlinearly with temperature and linearly with strain. The temperature sensitivity decreased from 1.113 to 0.830 MHz /°C in the range of 22–800 °C. The strain sensitivity was reduced from 0.054 to 0.042 MHz /με as the temperature increased from 22 to 700 °C and became unstable at higher temperatures due to creep effect. The strain measurement range was reduced from 19 100 to 6000 με in the temperature range of 22–800 °C due to fused silica’s degradation. The calibrated fiber optic sensor demonstrated adequate accuracy and precision for strain and temperature measurements and stable performance in heating–cooling cycles. It was validated in an application setting.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.