Abstract

The Cooper-Eromanga Basin is characterised by high heat flow that has been related to the presence of high radiogenic heat-producing granites. Several wells have been drilled in the area to exploit the heat from the fractured granitic rocks of the basement. Drilling through the hot formations in the Cooper Basin (max. temperature ca. 250 °C) with relatively cool drilling fluids induces an almost instantaneous cooling of the wellbore wallrock. Cooling of the hole (the usual case) increases the tensile stresses (and decreases the compressive stresses) at the wellbore wall. The magnitude of the thermal stresses is also dependent on the silica content of the formation. Modelling of the in situ stress tensor and mechanical properties of the wellbore rocks has revealed the time-dependent effect that the borehole collapse pressure has on the stability of the wells. Narrow breakouts form at the time of drilling. Afterwards, the temperature difference (ΔT) decays with time, and as the hole warms up compressive stresses increase and breakouts become enhanced. Therefore, if a high ΔT and a short well exposure time are achieved, it would be possible to inhibit breakout development, drill with a lower mud weight (eventually underbalanced), and, thus, minimise the risk of formation damage.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call