Abstract

We have studied the photophysical and photochemical behavior of three compounds derived from 3-hydroxychromone (3-HC), capable of undergoing excited state proton transfer (ESIPT). The compounds have two substituents, located in positions 2 and 7, one on each ring of the 3-HC heterocycle. The substituent pattern shows different electron donating and acceptor features. The compounds were studied by absorption and emission spectroscopy, steady state anisotropy, and time resolved emission spectroscopy (TRES) as a function of temperature. Results were interpreted using time dependent density functional theory calculations. Compared to reference compounds of 3-HC substituted only in the 2 position, the compounds show similar absorption and emission spectra, shifted 20–30 nm to higher wavelengths due to extended conjugation. TRES shows the existence of ESIPT in the thermodynamic equilibrium regime. This process is endothermic in all three compounds. The different behavior compared to monosubstituted 3-HC is attributed to the extended conjugation and to the electron donor acceptor character of the substituents, which has a more pronounced effect when the electron acceptor is located in position 2.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.