Abstract

HypothesisThe temperature dependence of boundary slip at liquid–solid interface is critical both for the fundamental theory and applications of fluid mechanics on micro and nanoscale, such as sustainable cooling of electronic devices. However, there is a controversy on the temperature dependence of boundary slip which lacks experimental evidence, we aim to resolve it by hypothesizing that the temperature dependent slip length depends on the variation in the interfacial energy barrier. ExperimentsHere, we measured ls – T relation of water and NaCl solution on self-assembled FDTS (Perfluorodecyltrichlorosilane) surface using colloidal probe AFM. The transition of ls – T monotonicity is found. For water and 0.1 M NaCl solution, ls is negatively correlated with T, while for 1 M NaCl solution, ls is positively correlated with T. FindingsTogether with molecular dynamics simulations, such observation is quantitatively explained with an analytical model based on rate theory, where the ls – T monotonicity depends on the difference between liquid–solid interfacial energy barrier and liquid internal energy barrier. Our results provide not only solid experimental evidence for the boundary slip being a rate process, but also a basis for the thermal-hydrodynamic design of microfluidic and nanofluidic devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.