Abstract

We investigate the influence of the annealing temperature on the evolution of the ice nanoclusters' geometry by means of low-temperature scanning tunneling microscopy. The clusters, grown at 110 K on Ag(100), gradually increase in height and their shape becomes more compact during annealing at 120 K, 125 K, and 130 K. The increase in height indicates an upward mass transport and reflects a stronger water-water than water-surface bonding. The change in shape, quantitatively expressed as an increase in fractal dimension, is driven by a reduction of the total energy of the step edge. The significant changes in geometry induced by a relatively mild temperature increase underline the importance of temperature for the shape and all properties influenced by this shape of hydrogen-bonded clusters of water ice.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call