Abstract
AbstractThe ultrafast dynamics of photoexcited charge carriers are studied in micron‐scale crystals composed of the inorganic perovskite CsPbBr3 with time‐resolved terahertz spectroscopy. Exciting with photon energy close to the band edge, it is found that a fast (<10 ps) decay emerges in the terahertz photoconductivity with increasing pump fluence and decreasing temperature, dominating the dynamics at 4 K. The fluence‐dependent dynamics can be globally fit by a nonlinear recombination model, which reveals that the influence of different nonlinear recombination mechanisms in the studied pump fluence range depends on temperature. Whereas the Auger scattering rate decreases with decreasing temperature from 77 to 4 K, the radiative recombination rate increases by three orders of magnitude. Spectroscopically, the terahertz photoconductivity resembles a Drude response at all delays, yet an additional Lorentz component due to an above‐bandwidth resonance is needed to fully reproduce the data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.