Abstract
The R-curve and fiber bridging phenomenon in mode-I fracture of glass-fiber reinforced laminates at different temperatures are investigated in this study, aiming to reveal their changes with temperature. The mode-I fracture experiments are carried out by adopting double cantilever beam (DCB) configuration at −55 ℃, 23 ℃ and 80 ℃. Fiber bridging is observed during the tests. The R-curve and bridging traction are quantitatively analyzed, from which the relationship between the R-curve and fiber bridging phenomenon, and temperature is obtained. It is found that fiber bridging effect is enhanced with the increase of temperature. The bridging traction of specimens tested at 80 ℃ is significantly higher than that at −55 ℃ and 23 ℃. An R-curve model considering both temperature and fiber bridging effects is proposed. In addition, bilinear and tri-linear traction-separation relations (TSLs) are utilized to establish a numerical model for the simulation of delamination growth behavior with the consideration of the temperature-dependent effect on the mechanical properties of composite materials. When using the bilinear TSL, the fiber bridging is considered by integrating the resulted R-curve into finite element model via a user-defined USDFLD subroutine. Effects of initial interface stiffness, interface strength and viscosity coefficient on simulated results are numerically investigated. Finally, applicability of the established numerical models is illustrated by comparisons between the simulations and the test results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.