Abstract

The measured dependence of ultrasonic velocity in Cold Lake oil sands on temperature is compared to theoretical model predictions for seismic wave propagation in porous media. The experiments indicated that change in fluid properties with temperature most greatly affect observed velocities. The theoretical model was constructed to account for temperature dependent fluid properties using correlations independent of the ultrasonic experiments. Theoretical and experimental P‐wave velocities agree within 5 percent for temperatures between 22°C to 125°C and effective stresses of 1 MPa and 8 MPa. The modeling indicates that the change in fluid bulk modulus with temperature dominates the observed 15 percent P‐wave velocity decrease between 22°C to 125°C. Over the same temperature range the model predicts the S‐wave velocity remains almost constant (<1 percent increase).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.