Abstract
CO2 reduction (CO2RR) with selective benzyl alcohol (BA) oxidation in a single photoredox reaction can simultaneously utilize photogenerated electrons and holes to realize efficient production of fuels and value‐added chemicals. Herein, a unique 2D/1D ZnIn2S4/In2O3 (ZIS/In2O3) heterostructure is developed displaying outstanding performance for photoredox catalysis. As is unequivocally illustrated by various advanced ex situ/in situ characterizations and theoretic calculations, the notable catalytic performances originate from the built‐in interfacial electric field within the ZIS/In2O3 heterostructure, which strongly ameliorates the separation and transport of charge carriers. Remarkably, the catalytic activity can further be boosted after coupling the additional thermal treatments, and the product selectivity is highly temperature dependent. Thereby, the precise formation of targeted products, which can serve as valuable industrial products and fuels can be controlled by changing the reaction temperatures, including obtaining the syngas with different H2/CO ratios from CO2 reduction, as well as benzaldehyde, hydrogenated benzoin, and dibenzyl ether (never reported for BA during photocatalysis) from the BA conversion. This study offers a constructive and inspiring contribution to reasonably developing photoredox catalysts, which can fully utilize photogenerated electrons and holes, as well as demonstrate how to controllably yield the targeted products by coupling thermo‐ and photoredox catalysis.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.