Abstract

Semipolar AlGaN multiple quantum wells (MQWs) have unique advantages in deep ultraviolet light emitters due to the weak Quantum-Confined Stark Effect. However, their applications are hampered by the poor crystalline quality of semipolar AlGaN thin films. Different treatments were developed to improve the crystal quality of semipolar AlGaN, including a multistep in situ thermal annealing technique proposed by our group. In this work, temperature-dependent and time-resolved photoluminescence characterizations were performed to reveal the carrier localization in the MQW region. The degree of carrier localization in semipolar AlGaN MQWs grown on top of the in situ-annealed AlN is similar to that of conventional ex situ face-to-face annealing, both of which are significantly stronger than that of the c-plane counterpart. Moreover, MQWs on in situ-annealed AlN show drastically reduced dislocation densities, demonstrating its great potential for the future development of high-efficiency optoelectronic devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.