Abstract

The short-term instrumented microindentation technique was applied for assessing the influence of temperature in the glassy region on the time-dependent mechanical properties of an average epoxy resin mix near to its native state. Linear viscoelasticity theory with the assumption of time-independent Poisson ratio value forms the basis for processing the experimental results. The sharp standard Berkovich indenter was used to measure the local mechanical properties at temperatures 20, 24, 28, and 35 °C. The short-term viscoelastic compliance histories were defined by the Kohlrausch–Williams–Watts double exponential function. The findings suggest that depth-sensing indentation data of thermorheologically simple materials influenced by different temperatures in the glassy region can also be used, through the time-temperature superposition, to extract viscoelastic response functions accurately. This statement is supported by the comparison of the viscoelastic compliance master curve of the tested material with data derived from standard macro creep measurements under pressure on the material in a conformable state.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.