Abstract

The electron transfer (ET) dynamics of an unusually rigid pi-stacked (porphinato)zinc(II)-spacer-quinone (PZn-Q) system, [5-[8'-(4' '-[8' ''-(2' '' ',5' '' '-benzoquinonyl)-1' ''-naphthyl]-1' '-phenyl)-1'-naphthyl]-10,20-diphenylporphinato]zinc(II) (2a-Zn), in which sub-van der Waals interplanar distances separate juxtaposed porphyryl, aromatic bridge, and quinonyl components of this assembly, have been measured by ultrafast pump-probe transient absorption spectroscopy over a 80-320 K temperature range in 2-methyl tetrahydrofuran (2-MTHF) solvent. Analyses of the photoinduced charge-separation (CS) rate data are presented within the context of several different theoretical frameworks. Experiments show that at higher temperatures the initially prepared 2a-Zn vibronically excited S1 state relaxes on an ultrafast time scale, and ET is observed exclusively from the equilibrated lowest-energy S1 state (CS1). As the temperature decreases, production of the photoinduced charge-separated state directly from the vibrationally unrelaxed S1 state (CS2) becomes competitive with the vibrational relaxation time scale. At the lowest experimentally interrogated temperature ( approximately 80 K), CS2 defines the dominant ET pathway. ET from the vibrationally unrelaxed S1 state is temperature-independent and manifests a subpicosecond time constant; in contrast, the CS1 rate constant is temperature-dependent, exhibiting time constants ranging from 4x10(10) s(-1) to 4x10(11) s(-1) and is correlated strongly with the temperature-dependent solvent dielectric relaxation time scale over a significant temperature domain. Respective electronic coupling matrix elements for each of these photoinduced CS1 and CS2 pathways were determined to be approximately 50 and approximately 100 cm-1. This work not only documents a rare, if not unique, example of a system where temperature-dependent photoinduced charge-separation (CS) dynamics from vibrationally relaxed and unrelaxed S1 states can be differentiated, but also demonstrates a temperature-dependent mechanistic transition of photoinduced CS from the nonadiabatic to the solvent-controlled adiabatic regime, followed by a second temperature-dependent mechanistic evolution where CS becomes decoupled from solvent dynamics and is determined by the extent to which the vibrationally unrelaxed S1 state is populated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.