Abstract

The microenvironment within the reverse micelle of the nonionic surfactant Triton X-100 (TX-100) in cyclohexane has been investigated by studying the magnetic field effect (MFE) on pyrene-dimethylaniline exciplex luminescence. The nature of exciplex fluorescence and its behavior in the presence of a magnetic field have been found to vary significantly with the water content of the medium. Results are discussed in light of multiple exciplex formation within the micelle which is further supported by the fluorescence lifetime measurements. Those exciplexes emitting at longer wavelength are found to be magnetic field sensitive while those emitting toward the blue region of the spectrum are insensitive toward magnetic field. Since the exciplex's emission characteristics and magnetic field sensitivity depend on its immediate surrounding, it has been concluded that the environment within the micelle is nonuniform. With an increase in hydration level, different zones of varying polarity are created within the reverse micelle. It has been pointed out that the magnetic field sensitive components reside inside the polar core of the micelle while those located near the hydrocarbon tail are field insensitive. However it has been presumed that an interconversion between the different types of exciplexes is possible. The environment within the reverse micelle is found to be largely affected by the change in temperature, and this is reflected in the exciplex emission property and the extent of magnetic field effect. Interestingly, the variation of MFE with temperature follows different trends in the dry and the wet reverse micelle. A comparison has been drawn with the reverse micelle of the ionic surfactant to get an insight into the difference between the various types of micellar environment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.