Abstract

Noncontact optical nanothermometers operating within the biological transparency windows are required to study temperature-sensitive biological phenomena at the nanoscale. Nanoparticles containing rare-earth ions such as Nd3+ have been reported to be efficient luminescence-based ratiometric thermometers, however often limited by poor water solubility and concentration-related quenching effects. Herein, we introduce a new type of nanothermometer, obtained by employing low-dimensional carbon nanodots (CNDs) as matrices to host Nd3+ ions (NdCNDs). By means of a one-pot procedure, small (∼7-12 nm), water-soluble nanoparticles were obtained, with high (15 wt %) Nd3+ loading. This stable metal-CND system features temperature-dependent photoluminescence in the second biological window (BW II) upon irradiation at 808 nm, thereby allowing accurate and reversible (heating/cooling) temperature measurements with good sensitivity and thermal resolution. The system possesses remarkable biocompatibility in vitro and promising performance at a high penetration depth in tissue models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.