Abstract
In this work, the lasing performance of a microsized single-crystal CsPbI3 triangular pyramid (MSCTP) is evaluated by measuring the lasing threshold at low temperature. The MSCTPs of well-defined facets are synthesized on a Si/SiO2 substrate with chemical vapor deposition. The MSCTP shows a spontaneous emission around 719 nm at room temperature and a stimulated emission resonant in a single Fabry-Perot mode within 148-223 K. The lasing threshold varies from 21.56 to 53.15 μJ/cm2 and presents a temperature dependence in an empirical exponential function with a characteristic temperature of 72.73 K. The temperature dependence of lasing behavior is ascribed to the competition between the exciton binding energy and thermal disturbance energy of CsPbI3. The results of this work provide us a perspective to engineer and optimize optoelectrical devices based on perovskite materials and a microsized optical cavity to investigate the light-matter interaction in quantum optics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.