Abstract

Gruneisen parameter is one of the most valuable quantities in thermodynamics, which links the material properties of bulk modulus, heat capacity at constant volume, thermal expansion coefficient, and volume together. A new thermodynamic model of temperature-dependent potential energy is proposed here to investigate the temperature dependent Gruneisen parameter of bulk material. The newly developed thermodynamic model leads to temperature dependent analytical solutions of Gruneisen parameter and other thermo-mechanical properties including the Gruneisen equation of state. Molecular dynamics simulations are conducted on single crystalline Ni, Cu, and Au bulk crystals and the simulation results verify the newly developed thermodynamic model and quantitively evaluate the theoretically derived physical quantities. In addition, the Debye model is also employed in the study of temperature dependent Gruneisen parameter and the results also verify the theoretical approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.