Abstract

We theoretically investigate the temperature-dependent Goos-Hänchen (GH) shifts in a symmetrical graphene-cladding waveguide (SGCW). The GH shifts in SGCW present a quasi-periodic tendency near the resonance angle with the change of temperature, which can mainly be attributed to the temperature dependence of the guiding layer’s thickness, instead of the graphene intraband conductivity and guiding layer’s refractive index. Importantly, tiny temperature fluctuations can cause significant deviations in GH shifts, and the deviations can be efficiently improved by adjusting the Fermi energy. Therefore, we propose a high-sensitivity temperature sensing scheme based on GH shifts in the SGCW, and the maximum sensitivity can reach up to −2.2 × 105 μm/°C. These researches may open avenues for applications of optical temperature sensors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.