Abstract

Giant magnetoimpedance (GMI)-based devices offer potential as next-generation low-cost, flexible, ultrasensitive sensors. They can be used in applications that include current sensors, field sensors, stress sensors, and others. Challenging applications involve operation at high temperatures, and therefore studies of GMI temperature dependence and performance of soft magnetic materials are needed. We present a high-temperature GMI study on an amorphous soft magnetic microwire from room temperature to 560°C. The GMI ratio was observed to be nearly constant at ∼86% at low temperatures and to decrease rapidly at ∼290°C, finally reaching a near-zero value at 500°C. The rapid drop in GMI ratio at 290°C is associated with a reduction in the long-range ferromagnetic order as measured by the spontaneous magnetization (M) at the Curie temperature (Tc). We also correlated the impedance with the magnetic properties of the material. From room temperature to 290°C, the impedance was found to be proportional to the square root of the magnetization to magnetic anisotropy ratio. Lastly, M(T) has been fit using a Handrich–Kobe model, which describes the system with a modified Brillouin function and an asymmetrical distribution of exchange interactions. We infer that the structural fluctuations of the amorphous phase result in a relatively small asymmetry in the fluctuation parameters.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call