Abstract

Using the stress distribution of the body containing a spherical inclusion, the stress intensity factor at the tip of the annular flaw emanating from the inclusion is formulized. Since the thermal expansion coefficient of matrix and inclusion is not matched, the residual stress is also taken into account. Introducing into the proposed temperature-dependent fracture surface energy or fracture toughness, the temperature-dependent fracture strength for ZrB2-SiC is obtained. The influence of oxidation on the fracture strength is also discussed and the analysis reveals that the oxidation has significant effect on the fracture strength under some circumstances. The calculated results are compared with the experimental data and they have very good consistency.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.