Abstract
Temperature dependent fracture properties of NiTi-based Shape Memory Alloys (SMAs), within the pseudoelastic regime, were analyzed. In particular, the effective Stress Intensity Factor (SIF) was estimated, at different values of the testing temperature, by a fitting of the William’s expansion series, based on Digital Image Correlation (DIC) measurements. It was found that temperature plays an important role on SIF and on critical fast fracture conditions. As a consequence, Linear Elastic Fracture Mechanics (LEFM) approaches are not suitable to predict fracture properties of SMAs, as they do not consider the effects of temperature. On the contrary, good agreements between DIC results and the predictions of an ad-hoc analytical model were observed. In fact, the model takes into account the whole thermo mechanical loading condition, including both mechanical load and temperature. Results revealed that crack tip stress-induced transformations do not represent a toughening effect and this is a completely novel result within the SMA community. Furthremore, it was demonstrated that the analytical model can be actually used to define a temperature independent fracture toughness parameter. Therefore, a new approach is proposed, based on the analytical model, where both mechanical load and temperature are considered as loading parameters in SIF computation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.