Abstract

Based on a kind of equivalence between heat energy and fracture energy, assuming that there is a constant maximum storage of energy that includes both heat energy and fracture energy, a new temperature dependent fracture surface energy model is developed. Using the new model and the classical ACK theory, a temperature dependent first matrix cracking stress model is obtained for the fiber reinforced ceramic composites. According to the model, the temperature dependent first matrix cracking stress of materials can be easily predicted using some basic material parameters such as matrix fracture surface energy and Young’s modulus. The model is verified by comparison with experimental data of SiC fiber reinforced reaction-bonded Si3N4 composites at different temperatures. Good agreement is obtained between predicted and experimental data of first matrix cracking stress. The dependency of first matrix cracking stress on fracture surface energy and interfacial shear strength is systematically analyzed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call