Abstract

Hyadaphis foeniculi (Passerini) (Hemiptera: Aphididae) is a cosmopolitan species and the main pest of fennel in northeastern Brazil. Understanding the relationship between temperature variations and the population growth rates of H. foeniculi is essential to predict the population dynamics of this aphid in the fennel crop. The aim of this study was to measure the effect of constant temperature on the adult prereproductive period and the life table fertility parameters (infinitesimal increase ratio (rm), gross reproduction rate (GRR), net reproduction rate (R0), finite increase ratio (λ), generation time (GT), the time required for the population to double in the number of individuals (DT), and the reproduction value (RVx)) of the fennel pest H. foeniculi. The values of lx (survival of nymphs at age x) increased as the temperature rose from 15 to 28°C and fell at 30°C, whereas mx (number of nymphs produced by each nymph of age x) increased from 15 to 25°C and fell at 28 and 30°C. The net reproduction rates (R0) of populations of H. foeniculi increased with temperature and ranged from 1.9 at 15°C to 12.23 at 28°C for each generation. The highest population increase occurred with the apterous aphids at 28°C. The rate of population increase per unit time (rm) (day) ranged from 0.0033 (15°C) to 0.1995 (28°C). The highest values of rm were recorded at temperatures of 28°C and 30°C. The rm values were a good fit to the models tested, with R2 > 0.91 and R2 adj > 0.88. The models tested (Davidson, Sharpe and DeMichele modified by Schoolfield et al., Logan et al., Lamb, and Briere et al.) were very good fits for the rm values observed, with R2 > 0.91 and R2 adj > 0.88. The only exception was the Davidson model. Of the parameters studied, the reproductive capacity was higher in the apterous aphids, with the unique exception of daily fecundity at 28°C, which was higher in the alate aphids of H. foeniculi. Parameters relating to the age-specific fertility table for H. foeniculi were heavily influenced by temperature, with the highest biotic potential and population growth capacity found at 34°C. Therefore, the results obtained in this study could be of practical significance for predicting outbreaks of fennel aphids and improving the management of this aphid in fennel crops.

Highlights

  • Intercropping cotton (Gossypium hirsutum Linné) with fennel (Foeniculum vulgare Miller) is a widely used strategy in northeastern Brazil for minimizing pest damage [1,2,3]

  • The aim of this study was to measure the effect of constant temperature on the prereproductive period and the fertility life table parameters (infinitesimal increase ratio, gross reproduction rate (GRR), net reproduction rate (R0), finite increase ratio (λ), generation time (GT), the time required for the population to double in the number of individuals (DT), and the reproduction value (RVx) of the fennel pest H. foeniculi

  • Temperatures between 15 and 30°C allowed the development of nymphs of all instars of H. foeniculi

Read more

Summary

Introduction

Intercropping cotton (Gossypium hirsutum Linné) with fennel (Foeniculum vulgare Miller) is a widely used strategy in northeastern Brazil for minimizing pest damage [1,2,3]. H. foeniculi is a cosmopolitan species and the main pest of fennel in northeastern Brazil [4]. In the State of Paraiba, the highest incidence of this aphid usually occurs during the hottest periods (October to December) when it colonizes the inflorescences [2,3]. These aphids can reduce seed yields by up to 80% in monocultures [2]. Studies on the bioecology of this pest are crucial for optimizing control strategies

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call