Abstract

The temperature-dependent dielectric and ferroelectric fatigue behaviors of ABO3-type perovskite thin films Pb(Zr0.52Ti0.48)O3 (PZT) and Pb0.75La0.25TiO3 (PLT) and layered Aurivillius thin films SrBi2Ta2O9 (SBT) and Bi3.25La0.75Ti3O12 (BLT) with Pt electrodes are studied. The improved fatigue resistance of PZT and PLT at a low temperature can be explained by the defect-induced suppression of domain switch/nucleation near the film/electrode interface, which requires a long-range diffusion of defects and charges. It is argued that the fatigue effect of SBT and BLT is attributed to the competition between domain-wall pinning and depinning. The perovskitelike slabs and/or (Bi2O2)2+ layers act as barriers for long-range diffusion of defects and charges, resulting in localization of the defects and charges. Thus, the fatigued SBT and BLT can be easily rejuvenated by a high electric field over a wide temperature range.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.