Abstract

Boron carbide plays a crucial role in various extreme environment applications, including thermal barrier coatings, aerospace applications, and neutron absorbers, because of its high thermal and chemical stability. In this study, the temperature-dependent elastic stiffness constants, thermal expansion coefficient, Helmholtz free energy, entropy, and heat capacity at a constant volume (Cv) of rhombohedral B4C have been predicted using a quasi-harmonic approach. A combination of volume-dependent first-principles calculations (density functional theory) and first-principles phonon calculations in the supercell framework has been performed. Good agreement between the elastic constants and structural parameters from static calculations is observed. The calculated thermodynamic properties from phonon calculations show trends that align with the literature. As the temperature rises, the predicted free energy follows a decreasing trend, while entropy and Cv follow increasing trends with temperature. Comparisons between the predicted room temperature thermal expansion coefficient (TEC) (7.54×10−6 K−1) and bulk modulus (228 GPa) from the quasi-harmonic approach and literature results from experiments and models are performed, revealing that the calculated TEC and bulk modulus fall within the established range from the limited set of data from the literature (TEC = 5.73–9.50 ×10−6 K−1, B = 221–246 GPa). Temperature-dependent Cijs are predicted, enabling stress analysis at elevated temperatures. Overall, the outcomes of this study can be used when performing mechanical and thermal stress analysis (e.g., space shielding applications) and optimizing the design of boron carbide materials for elevated temperature applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call