Abstract

Filamentous cyanobacteria are unsuitable food for Daphnia due to their poor manageability, poor nutritional value and, in some cases, toxicity. As the strength of harmful effects of cyanobacteria on filter-feeding zooplankton is temperature dependent, the global warming scenarios for eutrophic lakes in temperate zone might include an escalated suppression of Daphnia populations caused by the presence of cyanobacterial filaments. To test this assumption, we conducted life-table experiments with four clones of Daphnia magna fed either a green alga Scenedesmus obliquus or a non-toxic strain of filamentous cyanobacteria Cylindrospermopsis raciborskii in two temperatures (20 °C and 24 °C). Key life history parameters of Daphnia, i.e., age and size at first reproduction, fecundity, and individual growth rate, were measured. Both food and temperature significantly affected Daphnia performance, however, the effect of interaction of these two factors was ambiguous and highly genotype-dependent. We conclude that the temperature increase within the studied range will not necessarily strengthen the suppression of Daphnia growth by filamentous cyanobacteria, but may affect clonal selection within population of Daphnia, thus possibly triggering microevolutionary changes within affected populations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.