Abstract

This paper reports an investigation of the trapping mechanisms responsible for the temperature-dependent dynamic- $R_{\mathrm {\mathrm{{\scriptstyle ON}}}}$ of GaN-based metal–insulator–semiconductor (MIS) high electron mobility transistors (HEMTs). More specifically, we perform the following. First, we propose a novel testing approach, based on combined OFF-state bias, backgating investigation, and positive substrate operation, to separately investigate the buffer- and the surface-related trapping processes. Then, we demonstrate that the dynamic $R_{\mathrm {\mathrm{{\scriptstyle ON}}}}$ of GaN-based MIS-HEMTs significantly increases when the devices are operated at high temperature levels. We explain this effect by demonstrating that it is due to the increased injection of electrons from the substrate to the buffer (under backgating conditions) and from the gate to the surface (under positive substrate operation). Finally, we demonstrate that by optimizing the buffer and by reducing the vertical leakage, substrate-related trapping effects can be completely suppressed. The results described within this paper provide general guidelines for the evaluation of the origin of dynamic $R_{\mathrm {\mathrm{{\scriptstyle ON}}}}$ in GaN power HEMTs and point out the important role of the buffer leakage in favouring the trapping processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.